EVOLVING TREATMENT LANDSCAPE AND THE UNIQUE TREATMENT CHALLENGES IN HCC

September 8th 2023

Webcast participants

٠

٠

Dr. Jeff Evans

- Professor of Translational Cancer Research, Lead Glasgow Experimental Cancer Medicine Centre and National Clinical Lead of NHS Cancer Research Network, University of Glasgow
- Honorary Consultant in Oncology, Beatson West of Scotland Cancer Center
- PI in fostrox study

Dr. Maria Reig

- Head of the Barcelona Clinic Liver Cancer BCLC and Liver Oncology Unit at Hospital Clinic of Barcelona, Spain
- PI in fostrox study

Dr. Pia Baumann

CMO Medivir

Agenda

Time	Торіс	Speaker
13.00 - 13.05	Introduction and fostrox clinical development program	Pia Baumann
13.05 - 13.20	HCC current and evolving treatment landscape	Dr Jeff Evans
13.20 - 13.30	Current state of the art of 2L treatment in advanced HCC	Dr Maria Reig
13.30 - 13.40	Why is controlling tumour burden important in HCC?	Dr Maria Reig
13.40 - 13.50	Fostrox clinical trial experience and phase Ib data	Dr Jeff Evans Dr Maria Reig
13.50 - 14.00	Q&A	All

FOSTROX CLINICAL DEVELOPMENT PLAN

Pia Baumann MD PhD

Huge unmet need in HCC despite new standard of care with the approval of anti-PD1/L1 and TKIs. What about chemotherapy?

Traditional IV chemotherapy not used in HCC

Doses required to achieve sufficient liver exposure & clinical benefit cause unacceptable tolerability

HCC patients extra sensitive to liver toxicity due to primary tumor burden & underlying liver disease (cirrhosis)

General detoxifying mechanisms in hepatocyte-derived cancer cells, e.g. deaminases, cause inactivation of many cytotoxic compounds locally

Fostrox – Combination of proven mechanisms

Fostrox – synergistic MoA in HCC inhibiting DNA replication; strong potential for combinations

Fostrox + stimulation of immune system (PD-1)

Fostrox + blocking blood supply to tumour (TKI)

"Fostrox induces DNA damage and tumor cell death, potentially leading to **increased tumor antigen presentation and increased immune response**" "TKI's induce lack of oxygen in tumors leading to increased PGK1* expression and most importantly **higher levels of fostrox active metabolite**"

Fostrox + lenvatinib combination chosen in 2L HCC and dose secured in fostrox + pembrolizumab arm

CURRENT AND EVOLVING TREATMENT LANDSCAPE IN ADVANCED HCC

Dr Jeff Evans

Advanced hepatocellular carcinoma (HCC)

- HCC is an underserved disease where only surgery and liver transplantation provides hope of long-term survival^{1,2}
- The majority (80%) are diagnosed with advanced HCC with a 5-y survival < 20%^{1,2}
- Cirrhosis is the cause of HCC and the major hindrance for tolerating the treatment of HCC^{1,2}
- Despite recent advances in treatment of advanced HCC, only a minority experience longer term benefit and death rates remain high³

Evolving treatment landscape in advanced HCC – chemotherapy combinations not explored

BCLC staging and treatment recommendation

NCCN guidelines 2023; IO combo in 1L and a TKI in 2L

Standard of care treatment - synergy in mechanism of action – how could chemotherapy provide further benefit

- Current systemic therapy in advanced HCC uses multikinase inhibitors (MKIs), or combines inhibition of VEGF (bevacizumab) plus PD-L1 checkpoint inhibition (atezolizumab), or two different checkpoint inhibitors; PD-L1 (durvalumab) and CTLA4 (tremelimumab)
- Fostrox adds a third unique mechanism with the potential to synergize with current standard of care

Yang et al. Nature Reviews Gastroenterology & Hepatology | Volume 20 | April 2023 | 203–222 Created with BioRender.com

Systemic treatment accross stages of HCC

¹Transarterial chemoembolization ²Radiofrequency ablation ³Percutaneous ethanol injection Systemic treatment in early stage HCC - adjuvant post surgery

ImBrave 050 Adjuvant Study

Clinical cutoff: October 21, 2022; median follow-up duration: 17.4 mo. At clinical cutoff, 110 of 334 patients (33%) in the atezo + bev arm and 133 of 334 (40%) in the active surveillance arm experienced disease recurrence or death. FU, follow-up; NE, not estimable. HR is stratified. *P* value is a log rank. Chow et al IMbrave050 https://bit.ly/3ZPKzgM 12

Chow, R et al. AACR April 2023, New Orelans, LA, USA

Ghassan Abou-Alfa_2023 WGI

Efficacy of TACE drops with subsequent treatment attempts

TACE is the general standard of care for patients with intermediate-stage HCC (i.e. BCLC stage B)¹

However, despite consensus between international guidelines on when to discontinue TACE,^{2–4} TACE is commonly overused,⁵ which may have real-world clinical implications including a decline in response rates with each subsequent TACE treatment⁶

Response rates with TACE decline with each subsequent treatment⁶

- BCLC: Barcelona Clinic Liver Cancer, HCC: hepatocellular carcinoma, TACE: transarterial chemoembolisation.
- 1. Vogel A et al. Ann Oncol 2018;29(Suppl 4):iv238-iv255. 2. Heimbach JK et al. Hepatology 2018;67:358-380. 3. EASL. J Hepatol 2018;69:182-236. 4. Omata M et al. Hepatol Int 2017;11:317-370. 5. Galle PR et al. J Hepatol 2017;67:173-183. 6. Peck-Radosavljevic M et al. Oral presentation at ILCA, 14-16th September 2018, London.

Systemic treatment with lenvatinib in intermediate HCC shows longer survival vs local treatment only with TACE

The retrospective study showed that among intermediate-stage HCC patients '**exceeding the up-to-seven criteria'** with Child–Pugh A liver function, lenvatinib was associated with longer OS and PFS than TACE¹

CI: confidence interval, HR: hazard ratio, OS: overall survival, NR: not reached, PFS: progression-free survival, TACE: transarterial chemoembolisation. Reference: 1. Kudo M et al. Cancers 2019;11:1084.

Summary

- Fast evolution of treatments for advanced HCC with primarly immuntherapy and TKI modes of action applied
- Chemotherapy not explored since traditional iv chemotherapy resulted in a clear negative benefit-risk balance
- New liver directed chemotherapy provides combinations options with standard of care, current and new treatments
- Emerging changes in treatment algoritm introducing systemic therapy in earlier stages results are pending

CURRENT STATE OF THE ART OF 2L TREATMENT IN ADVANCED HCC

Dr Maria Reig

Treatment in intermediate and advanced HCC

- Monotherapy era from 2007 to 2018: sorafenib and lenvatinb
- Combination era from 2020 to

Trials/treatment arms	n	4	etiolo	ogy, %	EHD, %	BCLC B, %	ORR, %	mPFS,	mOS,	HR for	TRAE grade	TRAE leading to
								months	months	os	3-4, %	discontinuation of any drug (both drugs), %
		HBV	нсу	Non-viral								
IMbrave150 ^{31,57}												
Atezolizumab + bevacizumab	336	49	21	30	63	15	30	6.9	19.2	0.56	43	22 (10)
Sorafenib	165	46	22	32	56	16	11	4.3	13.4		46	12
ORIENT-32 ³⁰												
Sintilimab + Bevacizumab biosimilar	380	94	2	4	73	15	21	4.6	NR	0.57	34	14
Sorafenib	191	94	4	2	75	14	4	2.8	10.5		36	6
HIMALAYA ¹³												
Tremelimumab + durvalumab	393	31	28	41	53	20	20	3.8	16.4	0.78		14
Sorafenib	389	30	27	43	52	20	5	4.1	13.7			17
COSMIC-31258												
Atezolizumab + cabozantinib	432	29	31	39	54	32	11	6.8	15.4	0.90	54	
Sorafenib	217	29	31	40	56	33	4	4.2	15.5			
LEAP-002 ⁵⁹												
Pembrolizumab + lenvatinib	395	49	24	30	63	22	26	8.2	21.2	0.84	61	
Lenvatinib	399	48	22	33	61	24	17	8.0	19.0		57	110
SHR-1210-III-310 ⁶¹												
Camrelizumab + rivoceranib	272	76	8	15	64	14	25	5.6	22.1	0.62	80	24 (4)
Sorafenib	271	73	11	17	66	15	6	3.7	15.2		52	4 (4)

Rimassa et all JHEP 2023

OS HRs and 95% CIs were calculated using a Cox proportional hazards model adjusting for treatment, aetiology, ECOG PS and MVI. The 36-mo OS rate had a nominal 2-sided p-value of 0.0006. Updated analysis data cut-off: 23 January 2023.

CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; HR, hazard ratio; mo, month; MVI, macrovascular invasion; OS, overall survival; PS, performance status.

Clinical Decision-making – BCLC 2023 EVOLUTIONARY EVENTS

Treatment Stage Migration \rightarrow

- Age
- Comorbidities
- Patient values,
- Treatment availability
- HCC location
- Etc.

Down-Staging

Treatment Stage Migration

Untreatable-Progression

Reig M et al J Hepatol. 2022 Mar;76(3):681-693.

Clínic Barcelona Sequential Systemic Treatment - Second-Line treatment -

Barcelona Post-Progression Survival after checkpoint inhibitions

Treatment line			Talbot et al. Liver Internatiuonal 2022					
First systemic line		160 (44.0)						
Second systemic line		155 (42.6)		A 11 1 D				
Beyond the second systemic line		49 (13.5)	According to Progression pattern					
		Post-progression Survival						
		Post-progression survival (PPS)						
Concerta	Variable	No. of patie	ents	Univariable analysis HR (95% Cl); <i>p</i> -value	No. of patients	Multivariable analysis HR (95% CI); <i>p</i> -value		
Sympto	IHG							
receiv	Yes versus No	277		1.64 (1.21-2.22); <i>p</i> =.0013		1.25 (0.88–1.79); p = .2088		
Teeerv	NIH							
	Yes versus No	277		0.80 (0.57–1.13); p =.2116		1.08 (0.74–1.57); p =.6631		
	EHG							
	Yes versus No	277		0.98 (0.74–1.31); p =.9245		1.15 (0.85–1.55); p =.3377		
	NEH							
	Yes versus No	277		1.05 (0.76–1.43); p = .7594		1.07 (0.76–1.50); p = .7077		
	nVI							
	Yes versus No	277		2.15 (1.38-3.35); <i>p</i> =.0007		2.16 (1.35-3.46); p = .0012		

WHY IS CONTROLLING TUMOUR BURDEN IMPORTANT IN HCC?

Dr Maria Reig

Death related to HCC

lavarone et al Hepatology 2023 (accepted)

CLINICAL EXPERIENCE IN PHASE IB/IIA FOSTROX + LENVIMA IN 2L/3L HCC

Dr Jeff Evans

Fostrox + lenvatinib combination chosen in 2L HCC and dose secured in fostrox + pembrolizumab arm

Phase 1b/2a dose escalation & dose expansion combination study* . Study fully recruited.

*Currently ongoing at 15 sites in UK, Spain & Korea

Progression on prior treatment in all patients included in phase Ib dose escalation fostrox + lenvatinib

Patient characteristics 6 patients*						
Mean age	63 y					
Gender, Female / Male	17% / 83%					
ECOG Performance status 0/1	50% / 50%					
Viral/Non-viral	83% / 17%					
Extra hepatic lesion(s) Y/N	50% / 50%					
Region, Asia / Europe	67% / 33%					
Prior Tecentriq - Avastin in 1L	83%					
Known prior local therapy (TACE)	50%					
PD on prior treatment	100%					
Starting dose fostrox, 20mg / 30mg	50% / 50%					

Transient neutropenia was most common grade ≥3 adverse event in phase Ib dose escalation fostrox + lenvatinib

Safety 6 patients						
AE Grade ≥ 3	50%					
Neutropenia Grade ≥ 3**	33%					
Thrombocytopenia Grade ≥ 3	0%					
Asthenia Grade ≥ 3	17%					
Hypertension Grade \ge 3	33%					
Dose reduction lenvatinib	50%					
Dose reduction fostrox	17%					

Independent radiologist review of phase Ib dose escalation showed 5 stable disease out of 6 (RECIST 1.1)

*Data cut-off 19 May 2023

Weeks

Independent radiologist review of phase Ib dose escalation showed 3 out of 6 responders with 1 complete response (mRECIST)

